Search results

1 – 2 of 2
Article
Publication date: 2 May 2017

Mahmood Khalid and Khalid A. Juhany

The purpose of this paper is to obtain close form expressions for the dynamic stability of conical wave riders with flat surfaces which could be equipped with lifting surfaces on…

Abstract

Purpose

The purpose of this paper is to obtain close form expressions for the dynamic stability of conical wave riders with flat surfaces which could be equipped with lifting surfaces on its plain flat surface. Numerical simulation would require very large meshes to resolve flows at subscale level and the experimental evaluations would be equally difficult, requiring expensive measurement facilities with challenging procedures to secure such vehicles in confined test sections to obtain satisfactory wind on and wind off oscillations.

Design/methodology/approach

The design method uses appropriate pressure fields using small disturbance theory, which, in turn, is perturbed using the unsteady shock expansion theory to recover suitable expressions for the dynamic stability behaviour.

Findings

It was observed that the dynamic stability of the standard half-cone-type wave riders with flat upper surfaces deteriorates with the axis position measured from the pointed apex reaching a minimum at around x/co = 0.666. The half-cone wave rider with flat upper surfaces is dynamically less stable than a pure cone.

Research limitations/implications

The method is typically less accurate when the similarity parameter Mθ ≤ 1 = 1 or if the angle of attack is not small.

Practical implications

With renewed interest in hypersonic, future hypersonically would be designed as fast lifting bodies whose shapes would be close to the configurations of hypersonic wave riders, especially if they are designed to operate at upper atmosphere altitudes.

Originality/value

The analytic approach outlined in this paper for the evaluation of dynamic and static stability derivatives is original, drawing from the strengths of the small disturbance theory and shock expansion techniques. The method is particularly important, as there are no reported theoretical, numerical or experimental results in the literature.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 January 2018

Mahmood Khalid, Khalid A. Juhany and Salah Hafez

The purpose of this paper is to use a computational technique to simulate the flow in a two-dimensional (2D) wind tunnel where the effect of the solid walls facing the model has…

Abstract

Purpose

The purpose of this paper is to use a computational technique to simulate the flow in a two-dimensional (2D) wind tunnel where the effect of the solid walls facing the model has been addressed using a porous geometry so that interference arriving at the solid walls are duly damped and a flow suction procedure has been adopted at the side wall to minimize the span-wise effect of the growing side wall boundary layer.

Design/methodology/approach

A CFD procedure based on discretization of the Navier–Stokes equations has been used to model the flow in a rectangular volume with appropriate treatment for solid walls of the confined volume in which the model is placed. The rectangular volume was configured by stacking O-Grid sections in a span-wise direction using geometric growth from the wall. A porous wall condition has been adapted to counter the wall interference signatures and a separate suction procedure has been implemented for reducing the side wall boundary layer effects.

Findings

It has been shown that through such corrective measures, the flow in a wind tunnel can be adequately simulated using computational modeling. Computed results were compared against experimental measurements obtained from IAR (Institute for Aerospace, Canada) and NAL (National Aeronautical Laboratory, Japan) to show that indeed appropriate corrective means may be adapted to reduce the interference effects.

Research limitations/implications

The solutions seemed to converge a lot better using relatively coarser grids which placed the shock locations closer to the experimental values. The finer grids were more stiff to converge and resulted in reversed flow with the two equation k-w model in the region where the intention was to draw out the fluid to thin down the boundary layer. The one equation Spalart–Allmaras model gave better result when porosity and wall suction routines were implemented.

Practical implications

This method could be used by industry to point check the results against certain demanding flow conditions and then used for more routine parametric studies at other conditions. The method would prove to be efficient and economical during early design stages of a configuration.

Originality/value

The method makes use of an O-grid to represent the confined test section and its dual treatment of wall interference and blockage effects through simultaneous application of porosity and boundary layer suction is believed to be quite original.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 2 of 2